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ABSTRACT

Anaemia in children under-five years of age remains a major public health problem in

Malawi. Effective anaemia reduction control programmes requires evidence-based tar-

geting and optimum utilization of resources. Child anaemia has adverse consequences

on physical growth and mental development and is associated with long-term health and

economic consequences. Timely identification of locations highly impacted by anaemia

is a key to optimise resources to fight against the burden.

The study aimed to map child anaemia prevalence to identify hotspot areas and assessed

determinants of anaemia in children under-five years using 2015-2016 Malawi De-

mographic and Health Survey (MDHS) data. Generalised Linear Geostatistics Model

(GLGM) was fitted to estimate and predict Malawi’s child anaemia prevalence at a high

spatial resolution of 5 × 5 km pixel level. A total of 4, 601 children aged 6-59 months

were assessed. Out of these children, 2, 877 (62.5%) were anaemic.

Chikwawa, Nsanje and Salima were anaemia hotspot areas. At exceedance probability

of 75%, these districts had anaemia prevalence above 62.5%. Child age, child fever,

child stunting, number of children under-five years in a household, and household

wealth index were significantly associated with child anaemia. Elevation also called

the altitude of a place above sea level, had inversely association with child anaemia.

Areas along water bodies were more prone to high child anemia prevalence. Chik-

wawa, Nsanje and Salima districts need priority in terms of anaemia reduction control

programmes and interventions. Multisectoral approaches at all levels and nutrition pro-

grammes are needed in order to reduce child anaemia.
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CHAPTER 1

INTRODUCTION

1.1 Background

Anaemia in children under-five years remains a significant public health challenge glob-

ally, and in sub-Saharan Africa (SSA) in particular (Ogunsakin, Babalola, & Akinyemi,

2020). It has adverse consequences on children such as impairment of cognitive de-

velopment and is associated with long-term health and economic consequences (World

Health Organization, 2017) both in developed and developing countries. World Health

Organisation (WHO) data revealed anaemia as one of the ten most serious health prob-

lems globally (WHO, 2012). According to WHO, in 2011, 43% (273.2 million) of

children aged 6–59 months globally were estimated to be anaemic (Amugsi, 2020). In

Africa, approximately 60% of preschool children are anaemic (Amugsi, 2020). In 2019,

approximately 62.3% (84.5 million) in SSA were anaemic Ogunsakin et al. (2020). The

anaemia prevalence in SSA region ranges from 42% in Swaziland to 91% in Burkina

Faso (Amugsi, 2020). The World Health Organization considers anaemia prevalence

over 40% as a major public health problem, between 20% and 40% as a medium-

level public health problem, and between 5% and 20% as a mild public health prob-
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lem (WHO, 2001). Based on criteria by WHO, anaemia is therefore a severe public

health problem in almost all the developing countries. In 2016, Malawi Demographic

Health Survey (MDHS) findings indicated that prevalence of anaemia among children

aged 6-59 months was at 63.0% which is high (National Statistical Office, 2017). High

prevalence of anaemia and its consequences is so challenging to children’s health par-

ticularly in growth and development (Kawo, Asfaw, & Yohannes, 2018).

In spite of several interventions and control programs such as iron supplementation

and insecticide-treated bed nets distribution to curb the menace and provision of an-

timalarial medicine Ministry of Health (2022); Ogunsakin et al. (2020), anaemia is

still a severe public health problem in Malawi. Existing studies such as, Calis et al.

(2016); Khulu and Ramroop (2020); Tony, Ramroop, and Habyarimana (2021) on child

anaemia did not look at spatial heterogeneity of childhood anaemia to better quantify

childhood anaemia in space (geography) to identify disease hotspots that could bene-

fit from targeted interventions. Therefore, knowledge on local spatial heterogeneity of

child anaemia is essential for planning and evaluation of anaemia interventions. Timely

identification of locations highly impacted by anaemia is key to optimise usage of re-

sources to fight against anaemia.

1.1.1 Definition of anaemia

Anaemia is defined as a health condition characterised by insufficient haemoglobin (Hb)

concentration in a human body (WHO, 2012). Haemoglobin is a basic unit of red blood

cells responsible for oxygen transportation to the body’s tissues. Anaemia results when

haemoglobin concentration falls below accepted levels, due to either compromised pro-

duction, excessive destruction or excessive loss of red blood cells (Macdonald, Alison,
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Mike, Rose, & Miriam, 2010). Severity of anaemia is decided by measurement of blood

haemoglobin concentration. According to (World Health Organization, 2017), children

under-five years old are anaemic if Hb < 11.0 gram/decilitre (g/dL) and classified as

mildly anaemic (Hb value of 10 – 10.9 g/dL), moderately anaemic (Hb value of 7 – 9.9

g/dL), and severely anaemic (Hb value of < 7 g/dL).

1.1.2 Causes of anaemia

Anaemia arises from multifaceted factors and are classified as nutritional, non-nutritional,

and genetic bases (Molla, Egata, Mesfin, Arega, & Getacher, 2020). Iron deficiency

(ID) is estimated to contribute to approximately one-half of anaemia cases worldwide.

Low iron content in the diet and low iron absorption are major risk factors for anaemia

(National Statistical Office, 2017; Ngwira & Kazembe, 2016; Parbey et al., 2019). In

the developing world, infectious diseases such as malaria, Helminth infections, Human

Immune Virus (HIV) and tuberculosis (TB) are other important causes of anaemia (Ge-

breweld, Ali, Ali, & Fisha, 2019; National Statistical Office, 2017). Iron is the main

component for the haemoglobin production (Rakanita, Sinuraya, Suradji, Suwantika,

& Syamsunarno, 2020). Though there are limited studies on the aetiology of severe

anaemia, malaria is frequently identified as a principal cause of severe anaemia, par-

ticularly in African children (Chaparro & Suchdev, 2019). Existing evidence suggests

that severe anaemia, accounting for most anaemia related deaths, mostly occurs among

children under-five years old, and generally in the rainy season when the incidence of

malaria is at its peak (Simo et al., 2020). Other important causes of anaemia worldwide

include infections, other nutritional deficiencies (especially folate and vitamins B12, A

and C) and genetic conditions (including sickle cell disease, thalassaemia – an inherited
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blood disorder – and chronic inflammation) (WHO, 2012). Additionally, insufficient

safe drinking-water, inadequate hygiene and sanitary conditions, and poverty also con-

tribute to the development of anaemia (Rakanita et al., 2020; Semedo, Santos, Baião,

Luiz, & Da Veiga, 2014; WHO, 2012).

1.1.3 Burden of anaemia

Anaemia burden is so huge to the society and in children under-five years in particu-

lar. Anaemia was quantified to account for close to 9% of the total global disability

burden from all conditions (World Health Organization, 2017). It, therefore, has sig-

nificant consequences for human health as well as social and economic development.

For instance, anaemia impairs cognitive development and is associated with both short

and long-term health and economic consequences. The consequences have a significant

impact on the growth and development of children in the early stages of life. It poses

a significant public health issue leading to an increased risk of child mortality (Ogun-

sakin et al., 2020). Worldwide, anaemia accounted for 591, 000 perinatal deaths (World

Health Organization, 2017).

Anaemia has impact on work productivity in adults as well. Instead of concentrating to

their productive work, parents and guardians nurse the sick children. The phenomenon

impacts the household economically in terms of income or wage losses from decreased

productivity (World Health Organization, 2017). Worse still, exorbitant costs are in-

curred to cure anaemia in these infected children, for example in India where anaemia

is very prevalent, the lifetime costs of iron-deficiency anaemia between the ages of 6 and

59 months amounted to 8.3 million disability-adjusted life-years (DALYs) and annual

production losses of US$ 24 billion in 2013 (corresponding to 1.3% of GDP) (World
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Health Organization, 2017).

1.2 Factors associated with anaemia in children under-

five years

Broad range of factors contribute to prevalence and distribution of anaemia in children

under-five years. These factors fall into biological, socio-economic and contextual de-

terminants, with many acting simultaneously (World Health Organization, 2017). Ex-

amples of factors influencing anaemia in children include individual level factors; child

age, child sex, child morbidities (i.e., fever, diarrhea, cough, malaria), household level

factors; number of children under-five years in the household, number of children in the

household, poor sanitation, maternal education and wealth index of the household and

context level factors (Rainfall, elevation, temperature and vegetation cover) (Harding,

Aguayo, Namirembe, & Webb, 2018; Ogunsakin et al., 2020; Rahman, Mushfiquee,

Masud, & Howlader, 2019; Simo et al., 2020; Sorsa, Habtamu, & Kaso, 2021). Inter-

ventions to tackle anaemia must, therefore, integrate a range of potential and unique

risk factors at play in a particular setting and address their independent and overlapping

effects.

Observed association between child’s age and anaemia has been reported in several

studies (Harding et al., 2018; Ogunsakin et al., 2020; Rahman et al., 2019; Simo et al.,

2020; Sorsa et al., 2021). Among children under-five years, the younger the child is,

the more vulnerable the child is to anaemia. The risk of child anaemia decreases with

increasing age (Rahman et al., 2019). At young age, children experience high rates

of growth which increases demand for micronutrients such as iron, folate and vitamin
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B12. Ngwira and Kazembe (2016) reported that the chance of having anaemia is much

higher in children aged 5 to 20 months and decreases thereafter. A community-based

study in Ethiopia showed that child anaemia varies with the age group (Sorsa et al.,

2021). Among the age group between 9 - 12 months, anaemia prevalence was 54.6%,

and the lowest prevalence (15%) was reported among the older age group of 18 - 24

months.

Sicknesses in children like fever, diarrhoea, and cough are predisposing factors for

anaemia as they may lead to loss of blood. In addition, sickness reduces bodily im-

munity, nutrient absorption, and appetite for food, and thus further predisposes such

children to anaemia. This points to the need for measures that reduce or prevent the risk

of such sicknesses in children. Measures may include sleeping under insecticide-treated

mosquito nets, improving household sanitation, regular medical check-ups, and timely

treatment for all childhood infectious illnesses.

Socio-economic status which accounts for household wealth index is another factor that

influences variation in anaemia in children under-five years. It affects the prevalence of

anaemia through several pathways. Households which are not well to do have poverty

which is a major determinant of health outcomes (World Health Organization, 2017).

Such households are associated with poor living and working conditions. In return, they

are susceptible to poor water, sanitation, hygiene and inadequate infrastructure which

can lead to increased disease. Poverty is also linked to inadequate access to health-

care services including limited access to anaemia prevention and treatment services

(iron supplements, de-worming, insecticide-treated bed nets, as well as reproductive

care). In Malawi, the MDHS 2015-16 report on nutritious status of children under
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five indicated that the lowest wealth quintile were highly malnourished at 15% than

in the highest wealth quintile at 6% (National Statistical Office, 2015). In the study of

(Ogunsakin et al., 2020), It was revealed that less wealthy households have greater odds

of being anaemic than children from wealthy households. This entails that poverty is a

significant determinant of childhood anaemia.

Education is another major determinant of health outcomes. Studies by National Sta-

tistical Office (2015); Ogunsakin et al. (2020) have shown that mothers with higher

educational status are more likely to provide a healthy and hygienic balanced diet, re-

sulting in better health outcomes for both mothers and their children. Low maternal ed-

ucation level may affect mothers’ ability to access and understand health and nutrition

information, and ultimately negatively affect their children’s quality of diet. Mothers’

education level may also influence decision-making and compliance with recommended

health practices such as iron supplementation or reproductive health practices, as well as

care taking practices including feeding and hygiene behaviours. A study conducted by

Sorsa et al. (2021), in Dodota district, Southeast Ethiopia, revealed that children whose

mothers did not have formal education were at a higher risk of developing anaemia;

1.5-fold odds than children from educated mothers.

Anaemia and malnutrition remain a concerning health problem. Improving both the

nutritional and anaemic status in children younger than 5 years is critical to ensure high

quality of life to future contributors and leaders of a country. Insufficient folate, vitamin

B12, protein deficiencies, nutrients can also increase the risk of anaemia.

Malnutrition develops with either over- or under- consumption of food but herein, it

is defined as an insufficient intake of nutrients and/or other minerals. In developing
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countries, a low nutritional status of a child is usually an indicator of health problems

(Gaston, Habyarimana, & Ramroop, 2022). Consequences of malnutrition in children

include, poor performance at school, delayed psychomotor development, lower capac-

ity for work and reduced quality of life in adulthood. Determinants of nutritional status

in children is based on anthropometric indicators (stunting, wasting and being under-

weight) in accordance to WHO growth standards. Stunting (height-for-age) indicates

chronic or long-term malnutrition, wasting (low-weight-for-height) is linked to low food

intake and/or illness and is described as acute malnutrition, while an underweight child

(weight-for-age) can be either stunted, wasted or both.

1.3 Problem statement

Ending child anaemia is in tandem with SDG 3.1 and SDG 3.2 which strives at ending

all forms of malnutrition and preventable deaths of children under-five years by 2030

and reducing under-five mortality to as low as 2.5% (Simo et al., 2020). WHO and

United Nations Children Fund (UNICEF) recommend strategies for anaemia control

to be integrated in a country’s primary health care (PHC) system and existing pro-

grammes such as maternal and child health, integrated management of childhood ill-

ness (Roberts, Matthews, Snow, Zewotir, & Sartorius, 2020). Malawi like many SSA

nations is a low-resourced nation. Identification of hotspot areas (i.e., areas with above

average prevalence) is paramount to optimise utilization of available resources to fight

child anaemia. Existing studies, Khulu and Ramroop (2020); Tony et al. (2021) etc on

child anaemia did not consider spatial effects. Better understanding of child anaemia

prevalence spatial effects is a fundamental key in reducing child mortality and morbid-

ity due to anaemia. Geostatistic models are therefore best fit in low-resource settings
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where comprehensive disease registries do not exist. GLGM within a model-based geo-

statistical (MBG) framework are used for modelling and predicting prevalence, both at

observed and unsampled locations, for spatially correlated data. Through risk mapping

of the diseaseYankson, Anto, and Chipeta (2019), hotspot areas are of great value in

tracking and guiding anaemia control efforts.

1.4 Objectives

1.4.1 Main objective

To map anaemia prevalence of children under five in Malawi, model-based geostatistical

model.

1.4.2 Specific objectives

Specifically, the study aimed to:

• Assess factors of anaemia in children under-five years

• Identify areas that need targeted interventions in order to control anaemia in chil-

dren under-five years

1.5 Justification of the study

Reliable and accurate estimation of the prevalence of anaemia is essential in planning,

monitoring and targeting effective interventions. Malawi being low-resourced, it is even

more imperative to come up with cost-effective and efficient methods of estimating

prevalence of anaemia in children under-five years(National Statistical Office, 2015).
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Spatial mapping is one of the effective ways to achieve the above as these spatial maps

help identify hotspots and so make targeted interventions possible.The fact is that causes

of child anaemia are multiple and complex and may not be fully addressed within a short

term (Harding et al., 2018). For example, how do you address the educational levels

of mothers in a particular area in the short term? Or the cultural practice of having

many children, even under-five ones at the same time? Or religious beliefs that prevent

adherents from accessing medical interventions? Culture, religion and education levels

take time to tackle.

At all levels, both at local and international, interventions need to target high burden

areas if fighting against anaemia is to be a success. Anaemia maps are of help to policy

makers to formulate correct targets and interventions to reduce anaemia in children

under-five years. years(Roberts & Zewotir, 2020).

1.6 Thesis structure

The thesis has six chapters, introduction through conclusion. Chapter 2 presents liter-

ature review about anaemia prevalence modelling. This chapter reviews the commonly

applied generalised linear modelling techniques and approaches which have been used

to model anaemia prevalence, giving a background in their formulation and develop-

ment. Chapter 3 presents methodology employed for mapping anaemia prevalence

disease in children under-five years. Chapter 4 presents results, such as exploratory

analysis and GLGM modelling. Chapter 5 presents a discussion of results presented

in Chapter 4. Finally, Chapter 6 presents the major findings, recommendations and

limitations of the study.
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1.7 Conclusion

Anaemia in children under-five years is a public health problem globally. It needs at-

tention in order to curb the menace to human health which impacts social and economic

development of individuals. In 2016, Child anaemia prevalence in Malawi was at 63%

which is high and severe health problem according to WHO. In such a low-resourced

nation, timely identification of locations highly impacted by anaemia is key in optimis-

ing usage of resources to fight against anaemia.
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CHAPTER 2

LITERATURE REVIEW: ANAEMIA PREVALENCE MODELLING

2.1 Introduction

This chapter reviews the commonly applied generalised linear modelling techniques and

approaches which have been used to model anaemia prevalence, giving a background

in their formulation and development.

2.2 Generalised linear models

The class of generalised linear models (GLMs) extends the linear regression modelling

framework (Nelder & Wedderburn, 1972). Response variables are not necessarily con-

tinuous and normally distributed. There is appropriate link function that link the out-

come variable to the independent variables. Binomial and Poisson regression models

are widely used to analyse counts of disease cases. Observations Yi are assumed to be

independent explanatory variables measured without error.

GLM consists of three components:

a) random component
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Specifies the conditional distribution of response variable, Yi, i = 1, . . .n which is

independently sampled observations and a member of an exponential family. The

basic form of exponential family is as follows:

p(y;θ ,φ) = exp
[

yθ −b(θ)
a(φ)

+ c(y,φ)
]

(2.1)

where

• p(y;θ ,φ) is the probability function for the discrete random variable Y , or

the probability density function for continuous Y .

• a(·), b(·) and c(·) are known functions that vary from one exponential family

to another

• θ is the canonical parameter for the exponential family

• φ > 0 is a dispersion parameter

b) linear predictor

A linear function of regressors, Xi j.

ηi = α +β1Xi1 +β2Xi2 + · · ·+βkXik (2.2)

c) A smooth and invertible linearizing link function g(·)

Transforms the expectation of the response variable, µi = E(Yi), to the linear

predictor:

g(µi) = ηi = α +β1Xi1 +β2Xi2 + · · ·+βkXik (2.3)

GLM model is used in many disciplines including medical research (Khulu, 2019).

According to Khulu (2019), logistic regression is a special case of GLM. Commonly

used regression model when the research does not want to handle the sample design
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into the analysis is simply logistic regression. However, survey logistic regression is

used to incorporate sample design into the analysis. Survey logistic regression is given

by

ln =

[
ηi j

1−ηi j

]
= β0 +β1X1i j + . . .+βPXpi j (2.4)

2.2.1 Stepwise regression

In GLM modelling, individual variables are tested if they have any significance in a

model. Thus stepwise regression aims to select a model step by step, adding or delet-

ing one predictor at a time based on the statistical significance (Wang & Chen, 2018).

Stepwise regression is a combination of both the forward and backward selection tech-

niques. Every individual variable in the model is checked to see if its significance has

been reduced below the specified tolerance level. If a non-significant variable is found,

it is removed from the model. Stepwise regression requires two significance levels: one

for adding variables and one for removing variables(Wang & Chen, 2018). The cut-off

probability for adding variables should be less than the cut-off probability for removing

variables so that the procedure does not get into an infinite loop.

In multiple linear regression there is one output variable but many input variables.

y = b0 +b1x1 +b2x2 + · · ·+bixi (2.5)

where y is the response variable, xi are covariates and bi are coefficients that are to be

generated by the linear regression algorithm. Instead, a subset of those features needs

to be selected which can predict the output accurately. Stepwise regression is crucial in

child anaemia modelling, many factors associated with child anaemia cannot be studied

at the same time, stepwise regression is therefore done to reduce compute time and to
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remove redundant variables. This also reduces the complexity of the problem.

2.2.2 Correlation matrix

A correlation matrix is a simple way to summarize the correlations between all variables

in a dataset (Komiyama, 2008). A correlation matrix can help us quickly understand

the correlations between each pair of variables.

One key assumption of multiple linear regression is that no independent variable in

the model is highly correlated with other variables (Hadavand-Siri & Deutsch, 2012).

Multicollinearity in regression analysis occurs when two or more predictor variables

are highly correlated to each other, such that they do not provide unique or independent

information in the regression model. Highly correlated variables cause problems when

fitting and interpreting the regression model. Consequences of high multicollinearity

is that it increases standard error of estimates of the β ’s and in return may lead to

misleading results. Predictors whose correlation are close to 1 or -1, one of the two

correlated predictors need not to be included in the model (Hadavand-Siri & Deutsch,

2012).

2.2.3 Variance inflation factor (VIF)

The most common way to detect multicollinearity is by using the variance inflation

factor (VIF), which measures the correlation and strength of correlation between the

predictor variables in a regression model (Shrestha, 2020).

The value for VIF starts at 1 and has no upper limit. A general rule of thumb for

interpreting VIFs is as follows:
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• A value of 1 indicates there is no correlation between a given predictor variable

and any other predictor variables in the model.

• A value between 1 and 5 indicates moderate correlation between a given predictor

variable and other predictor variables in the model, but this is often not severe

enough to require attention.

• A value greater than 5 indicates potentially severe correlation between a given

predictor variable and other predictor variables in the model. In this case, the

coefficient estimates and p-values in the regression output are likely unreliable.

Variance inflation factor is therefore used to ensure child anaemia modelling had no

multicollinearity predictors.

2.2.4 Information criteria and model selection

Information criteria is a tool which is vital for identifying a model that best fits the data.

Model selection refers to the problem of using the data to select one model from the list

of competing models (de Graft Acquah, 2010). Model selection is a fundamental part

of the statistical modelling process, and it has been an active research area since the

1970s (Xue, Luo, & Liang, 2017). Model selection using information criteria has been

developed to summarise data evidence in favour of a model. Specifically, information

criteria techniques emphasise minimising the amount of information required to express

the data and model. For stepwise regression, the function step is called and the direction

is set to ”both” so that the algorithm can add and drop predictors in every iteration.

Once it is called, the iterating process will proceed by itself. Just as what happens in the

Information criteria, the process adds and/or subtracts the predictors till the best model
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that fits the data is yielded.

Akaike information criterion

The Akaike Information Criterion (AIC) is used to compare competing nested and non-

nested models (Xue et al., 2017). The idea is to select the model that minimises the

negative likelihood penalised by the number of parameters.

AIC =−2log p(L)+2p (2.6)

where

• L refers to the likelihood under the fitted model

• p is the number of parameters

Bayesian information criteria (BIC)

BIC is another popular model selection principle. It selects the model that minimizes

Equation (2.7),.defined as

BIC =−2log p(L)+ p log(n) (2.7)

where

• L refers to the likelihood under the fitted model

• p is the number of parameters

• n is the sample size

The AIC and the BIC do have the same aim of identifying good models even if they

differ in their exact definition of a “good model”(Ding, Tarokh, & Yang, 2018). In both

criteria, the best model that is selected is one with the minimum value.
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While GLM methods are flexible and incorporate non-normal binary response variables

as opposed to linear models, they are unable to measure the spatial effects of predictors.

Geostatistics models provide a robust framework to understand the spatial variation of

the burden (Noor, 2011).

2.3 Geostatistics models

The term geostatistics encompasses statistical methods relevant to the analysis of geo-

located data whose aim is to study geographical variation throughout a region of interest

but the available data are limited to observations from a finite number of sampled loca-

tions (Diggle & Giorgi, 2019). Geostatistics deals with statistical models and methods

associated with spatially discrete data relating to an unobserved spatially continuous

phenomenon (Diggle & Giorgi, 2016). Geostatistics data refers to data gathered at a

discrete set of points in an area of interest say A, with an intention of understanding the

behaviour of an unobserved, spatially continuous phenomenon that exists throughout

A and could, in principle if not in practice, be observed at any point x in A. This phe-

nomenon is typical in low-resource settings where comprehensive disease registries do

not exist. Statistical theories for the analysis of geostatistical data propose model selec-

tion of variables for spatial estimation and prediction. For this reason it is important to

think of what sampling points to use in order to obtain accurate predictions. The spatial

estimation is the inference about the spatial process and prediction at new locations is

based upon partial realization (Banerjee, Gelfand, & Carlin, 2003).
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2.3.1 Data structure

The canonical geostatistical problem, expressed in the language of model-based geo-

statistics, is the following:- Data,

{(yi,xi) : i = 1, . . . ,n} (2.8)

are realised values of random variables Yi associated with pre-specified locations xi ∈

A ⊂ R2. The Yi are assumed to be statistically dependent on an unobserved stochastic

process, {S(x) : x∈R2}, as expressed through a statistical model [S,Y ] = [S][Y |S], where

[·] means “the distribution of,” Y = (Y1, . . . ,Yn) and S = {S(x1), . . . ,S(xn)}

The formal model-based solution is the conditional distribution, [S|Y ], which follows as

a direct application of Bayes’ theorem, [S|Y ].

[S|Y ] = [S][Y |S]/
∫
[S][Y |S]dS (2.9)

2.3.2 Geostatistical model formulation

Basically geostatistical prevalence survey consists of visiting communities at sampling

locations xi : i = 1, . . . ,n distributed over a region of interest A and, in each community,

sampling mi individuals and recording whether each tests positive or negative for the

disease of interest. If p(x) denotes prevalence at location x, the standard sampling

model for the resulting data is binomial

Yi ∼ Bin(mi, pi) (2.10)

Linkage of the p(xi) at different locations is usually desirable, and is essential if we

wish to make inferences about p(x) at unsampled locations x (Diggle & Giorgi, 2016).

Thus Yi follows a binomial distribution with mean E[Yi|S(xi),Zi] = mi pi such that
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Yi = log

{
p(xi)

1− p(xi)

}
= d(xi)

′
β +S(xi)+Zi (2.11)

where di = d(xi) is the set of explanatory variables and Zi are independent N(0, τ2)

variates.

Model S(x) is a stationary isotropic Gaussian process with variance σ2 and Matern

correlation function given by

ρ(u,φ ,κ) = {2κ−1
Γ(κ)}−1(u/φ)κ

κ(u/φ),u > 0,

where φ > 0 is a scale parameter, κκ(.) is the modified Bessel function of the second

kind of order κ > 0 and u is the distance between two sampling locations. The shape

parameter κ determines the smoothness of S(x), in the sense that S(x) is ⌈κ⌉−1 times

mean-square differentiable, with ⌈κ⌉ denoting the smallest integer greater than or equal

to κ .

2.3.3 Parameter estimation

A long-standing and important problem in geological mapping and modelling is the cal-

culation of estimates at unsampled locations (Diggle & Giorgi, 2016). The central idea

is to calculate an estimate that minimizes the expected squared error between the un-

known true value and the estimate. In general, all data that are related to the unsampled

location should have an opportunity to influence the estimate. Another central feature

of estimation is that the estimates should be constructed with a clearly defined measure

of optimality. In classical and non-Bayesian approaches parameter estimation precede

spatial prediction (Diggle & Giorgi, 2016).

20



2.3.4 Generalised linear geostatistical model

The Generalised linear model is an extension of the linear regression model for analysing

non-Gaussian data under the assumption that measurements at different locations are

statistically independent of each other (Diggle & Giorgi, 2019). This section describes

the extension of generalised linear models (GLMs) to the geostatistical models called

Generalised Linear Geostatistical Models (GLGMs).

2.3.5 Motivation for GLGM modelling

The theory of generalized linear models and quasi-likelihood provides a flexible frame-

work for analysing non-normal data (Nelder & Wedderburn, 1972). GLGM within a

model-based geostatistical (MBG) framework are used for modelling and predicting

prevalence, both at observed and unsampled locations, for spatially correlated data. A

typical feature of most geostatistical problems is a focus on prediction rather than on

parameter estimation. GLGM improves prediction of outcome of interest compared to

random sampling techniques (Ngwira & Kazembe, 2015) and is therefore applied more

generally to scientific problems that involve predictive inference about an unobserved

spatial phenomenon S(x) using any form of incomplete information (Diggle & Giorgi,

2016). GLGMs model prevalence mapping of disease in low-resource countries where

registry data are lacking. Data predictions are vital in such areas. It informs public

health action yielding to early interventions.
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2.3.6 GLGM Model Formulation

The hierarchical representation of the joint distribution of a spatial process S and data

Y = (Y1, . . . ,Yn), is given as

[Y,S,θ ] = [S;θ ][Y |S;θ ] (2.12)

where condition on S, Yi are independent Normally distributed with means d(xi)
T β +

S(xi) and common variance τ2.

Class of GLGMs is a modification of Equation (2.12) and the following are adhered to:

• Yi is a non-Normal

• Incorporation of new set of independent random effects Ui ∼ N(0,v2)

The resulting model has the hierarchical form

[Y,S,U ;θ ,v2] = [S;θ ][U ;v2][Y |S;U ;θ ] (2.13)

Equation (2.13) is the GLGM model form. The observed responses Y = (Y1, . . . ,Yn)

are conditionally independent given the realisations of an unobserved Gaussian process

S(x) and a set of independent Normally distributed random variables Ui. Expectation of

Yi is g(ηi), where

ηi = d(xi)
T

β +S(xi)+Ui (2.14)

where;

• ηi is the linear predictor

• g(·) is the link function of the model

• Ui is analogous to the nugget effect in the linear model
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The non-hierarchical representation of Equation (2.13) is

Yi = d(xi)
T

β +S(xi)+Ui +Zi (2.15)

where the Zi are mutually independent N(0,τ2).

Most widely used examples of GLGMs use binomial logistic and Poisson log-linear

models because it is possible to estimate both the covariance structure of the spatial

process S(x) and the variance of the independent random variables Ui (Diggle & Giorgi,

2019). In both sampling distributions the variance of the conditional sampling distribu-

tion of Yi is a specified function of its mean.

Binomial sampling

Let xi designate the location of a sampled community where ni children are selected at

each xi to ascertain whether they have anaemia or not. If the number testing positive is

Yi such that d(x) denote the explanatory variables associated with a location x. Then Yi

is a Binomial distribution with ni trials and probability of a positive test p(xi), where

Yi j = log
{

p(xi)

1− p(xi)

}
= α +d(xi)

T
β +S(xi)+Zi (2.16)

Where α is the intercept parameter, S(x) is unobservable random effect which is Gaus-

sian process with zero mean and a constant variance σ2 and Zi are mutually indepen-

dent zero-mean Gaussian random variables with variance τ2. The index i represents the

household and the index j represents an individual within the household.

Poisson sampling

This is widely used to model sampling distribution of outcome Y that it is open-ended

count. Poisson distribution with mean λ = np ∼ Bin(n, p) whose n number of trials is
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large and probability of success p is small; mostly applicable for rare disease in a large

population over a fixed spatial region over a fixed time-interval. The assumption is that

cases occur independently in a spatial or temporal continuum (Diggle & Giorgi, 2019).

Poisson log-linear geostatistical model for random variable Yi associated with location

xi is defined as

log{λ (xi)}= d(xi)
T

β +S(xi)+Ui (2.17)

where S(x) is a Gaussian process with zero-mean, Ui is a set of independent zero-mean

Normally distributed random variables and λ (xi) is conditional expectation.

In this study, distribution of child anaemia Yi was not an open-ended count on the cluster

xi but rather the sampled individuals at each location xi. Thus Binomial sampling was

preferred over Poisson sampling.

2.3.7 Spatial prediction

In spatial prediction we firstly define predictive target T ∗, location from the realisation

of the spatial component of the linear predictor, d(x)T β + S(x) for all values of x in

the region of interest A (Diggle & Giorgi, 2016). The focus is on the unexplained

component of the spatial variation, S(x). Extreme values in a predictive map of S(x) hot-

spot and cold-spot areas are very critical in spatial prediction. They provide the clear

direction for evidence-based decisions to policy makers and programs implementers.

Summary statistics of predictive distribution depends on probability distribution of T ∗

conditional on the observed data.

For the geostatistical Binomial model, a natural predictive target is the prevalence over
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the region of interest A given by

T ∗ = {p(x) = exp{T (x)}/(1+ exp{T (x)}) : x ∈ A} (2.18)

where T (x) = d(x)T β +S(x)

In Equation (2.18), the point prediction takes the form of a map. Thus, the predictive

target map shows a particular feature of the map, for example, its maximum or an indi-

cator of whether the average value over a sub-region exceeds a policy-relevant thresh-

old. The most commonly used summaries of the predictive distribution of a prevalence

surface are maps of its means, standard errors and selected quantiles for each spatial

unit (Giorgi, Diggle, Snow, & Noor, 2018)

In spatial prediction, we draw a number, B, of random samples from the predictive dis-

tribution of the complete spatial surface {S(x) : x ∈ A}. Values of the specific target

from each sample, T ∗
1 , . . . ,T

∗
B . Suitable summaries of the resulting empirical distribu-

tion of the T ∗
i . In the prediction process, region A is approximated by a regular grid

X = {x∗1, . . . ,x
∗
q}. This regular grid, X have q prediction locations that cover A.

To make inference on T ∗, we obtain samples from its predictive distribution, [T ∗|y].

Since any target T ∗ is calculated directly from the fitted model parameters and the

spatial S(x), the problem reduces to sampling from the predictive distribution of S∗ =

{S(x) : x ∈ X }. Hence

[S∗|y] =
∫
[S∗,S|y]dS =

∫
[S|y][S∗|S]dS (2.19)

where [S∗|S,y] = [S∗|S]. To sample from [S∗|y], we sample from [S|y] and then from

[S∗|S] to obtain our sample s∗h for h = 1, . . . ,B. [S∗|S] is a multivariate Gaussian distri-
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bution with mean vector and covariance matrix given by

E[T ∗|y] = µ
∗+σ

2CT
∑
−1(y−µ) (2.20)

where C is the n by q matrix with ith column

ci = (ρ(||x∗i − x1||;φ), . . . , ||x∗− xn||;φ)

and

Cov[T ∗|y] = ∑
∗−σ4CT

∑
−1C (2.21)

where the matrix ∑
∗ has (i, j)-th element ∑

∗
i j = σ2ρ(||x∗i − x∗n||;φ).

In spatial prediction the unobserved data is interpolated from the observed data which

together are used to have fine maps with exceedance probabilities showing extreme

areas of disease prevalence.

2.3.8 Exceedance probabilities

In prevalence estimation analysis, it is worthy to identify hotspot areas for sound de-

cision making (Yankson et al., 2019). To identify hotspot areas, defined as areas with

prevalence above average, or some policy relevant threshold, we use what is called an

exceedance probability. Areas whose anaemia prevalence is above a set threshold, say

c, may be considered to have high anaemia prevalence. Exceedance probabilities are

important when assessing the localised spatial behaviour of a phenomenon and the as-

sessment of unusual clustering or aggregation of disease (Ghosh, 2009). The simplest

case of an exceedance probability is

EP = Pr(x > c) (2.22)
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where Pr(x) is a probability which estimates how frequently the relative risk exceeds

the null risk and can be regarded as an indicator of how unusual the risk is in that area.

This leads to assessment of hotspot communities. The closer the EP is to 1 the higher

the likelihood that it is to be above the threshold c. If EP is closer to 0, the prevalence

is likely to be below the threshold c. In cases where it is closer to 0.5, prevalence is

equally likely to be above or below the threshold c.

2.4 Spatial model diagnostics

2.4.1 Variograms

A variogram is an exploratory tool for spatial data. It is widely used in geostatistical

analysis for both exploratory analysis and model validation for parameter estimation

and formal model comparison. It is mostly used in likelihood based methods, whether

non-Bayesian or Bayesian (Diggle & Giorgi, 2019). In spatial data analysis variograms

are often used instead of covariance functions in other analyses. The variogram is based

on second-order moments, and therefore gives a very natural way to describe the de-

pendence structure in a Gaussian model (Brockwell & Davis, 2006). Variograms are

computed to explore spatial correlation in the data. The variogram of a spatial stochas-

tic process S(x) is the function

V (x,x′) =
1
2

Var{S(x)−S(x′)} (2.23)
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where x and x′ are any two points in R2. If the process S(x) is stationary with variance

σ2 and correlation function ρ(u), then

VS(x,x′) =
1
2
(Var{S(x)}+Var{S(x′)}−2Cov{S(x),S(x′)})

= σ
2{1−ρ(u)}

For a geostatistical data set, (xi,Yi) : i = 1, . . . ,n, if Yi is imprecise, the value of Y (x) is

not unique. For instance two measurements Y1 and Y2 at the same location x, may well

have different values.

For data value

Yi = S(xi)+Zi : i = 1, . . . ,n (2.24)

where Zi are mutually independent with mean zero and variance τ2. If S(x) in Equa-

tion (2.24) has a variance σ2 and correlation function ρ(u), where u, is the distance

between the data-locations xi and x j, then Corr{Yi,Y j}= σ2ρ(ν)/(τ2+σ2), which ap-

proaches σ2/(τ2+σ2) as u approaches zero. The equivalent expression as a variogram

is

V (u) = τ
2 +σ

2{1−ρ(u)} (2.25)

The measurement error variance τ2 is also called the nugget variance or simply nugget.

The variance of S(x) is sometimes called the sill.

Computation of variograms

A variogram can be computed through the equation Equation (2.26).

γ(h) =
1

2N(h) ∑
i j∈N(h)

(zi − z j)
2 (2.26)
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Where N(h) is a number of pair observations (i, j) separated by a spatial distance h.

Terms zi and z j are the attribute values of observations i and j respectively.

The function in Equation (2.26) calculates the attribute difference between neighbour-

ing observations separated by a lag h to evaluate if these observations display the same

information. Semi-variance increases with increase in the distance between observa-

tions because near observations share more characteristics than distant ones.

Variogram parameters

• nugget

It represents the small-scale spatial variation within the field. An indicator of how

noisy the spatial structure is. For instance, inside the community, there might exist

children exposed to different factors that may cause anaemia. When the minimal

distance between the said children is very large, the nugget might be found higher

than it should be.

• partial still

Represents the magnitude of variation of the variable of interest. Intuitively, the

higher the partial sill compared to the nugget, the stronger the spatial structure. The

sill is the variance of the dataset and can be computed as the sum of the partial sill

and nugget.

• range

This is the distance beyond which observations are no longer spatially correlated. On

average, above a specific spatial distance and whatever the pair of points examined,

observations are too dissimilar and do not share any relationship.
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2.5 Model validation

Validation of a fitted linear geostatistical model is based on the empirical variogram of

the residuals from an ordinary least squares fit to the fixed effects component of the

model. In GLGM the variation in the outcome, is partitioned into explained and unex-

plained variation on the scale of the linear predictor. Assessment is therefore based on

how the unexplained component is spatially correlated (Diggle & Giorgi, 2019). Based

on the GLM framework we first assume that Yi conditionally on a set of independent

Gaussian variables Zi, with mean zero and variance τ2, belongs to the family of expo-

nential distribution, with link function g(·) and linear predictor

ηi = d(xi)
T

β +Zi (2.27)

In the geostatistical setting, unexplained variation, Zi in Yi might also include a spatially

structured component, which would manifest itself in the form of residual spatial cor-

relation. Evidence of spatial dependence in the data is through testing of independence

of Zi in Equation (2.27). A point predictor Z̃(xi) is used since Zi are not observed. The

point predictor is a suitable summary of the conditional distribution of Zi given the data,

called the predictive distribution of Zi. By the application of Baye’s theorem,

[Zi|yi] = [Zi,yi]/
∫
R
[Zi][yi|Zi] dZi (2.28)

Common choices for the point predictor are the mean, median or mode of [Zi|yi]. Mean

is however favoured since it minimises the mean square error, E[(Z̃i −Zi)
2] (Diggle &

Giorgi, 2019). This distribution [Zi|yi] depends on the model parameters.

To establish whether the apparent patterns of Zi are or are not compatible with random

fluctuations about a constant value, we use the Monte Carlo strategy to simulate the
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behaviour of empirical variograms under the assumption of spatial independence.

The first step in the model validation is to randomly permute the labelling of the Z̃i

while holding fixed the location xi. Then we compute the empirical variogram using

the permuted Z̃i. The first two steps are repeated B times. The B empirical variograms

are used to compute pointwise 95% tolerance interval at each of the pre-specified dis-

tance bins under the hypothesis of spatial independence. Residual spatial correlation is

validated if the empirical variogram falls within the generated 95% tolerance band.

2.6 Conclusion

To identify anaemia hotspot areas, geostatistics model is crucial to study and understand

the behaviour of an unobserved spatially continuous phenomenon in the study area.
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CHAPTER 3

METHODS

3.1 Introduction

This chapter presents the methodology employed for mapping anaemia prevalence dis-

ease in children under-five years. It focuses on the study area and data sources, cluster

locations and how the data was managed and analysed. It further provides information

on the statistical modelling and model selection procedure.

3.2 Study area

Malawi is a landlocked country South of the equator in sub−Saharan Africa (SSA).

It is bordered to the North and North-East by the United Republic of Tanzania; to the

East, south and South-West by Mozambique and to the North West by the Republic

of Zambia. The country is 901 kilometres long and ranges in width from 80 to 161

kilometres. It has a total area of 118,484 square kilometres of which 94,276 square

kilometres is land area. The remaining area is mostly composed of Lake Malawi, which

is about 475 kilometres long and runs down Malawi’s Eastern boundary with Mozam-

bique. Malawi’s most striking topographic feature is the Rift Valley that runs the entire
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length of the country, passing through Lake Malawi in the Northern and Central regions

to the Shire Valley in the South. The Shire River drains the water from Lake Malawi

into the Zambezi River in Mozambique. To the West and South of Lake Malawi lie fer-

tile plains and mountain ranges whose peaks range from 1,700 to 3,000 metres above

sea level. See Figure 1.

The country is divided into three regions: the Northern, Central and Southern regions

which are further divided into districts. In total, there are 28 districts in the country. Ad-

ministratively, the districts are subdivided into Traditional Authorities (TAs), presided

over by chiefs. Traditional Authorities are composed of villages, which are the smallest

administrative units and are presided over by village headmen and headwomen. De-

mographically, the country has a population of 17,563,749 people of which 9,042,289

(51.5%) are female while men account for 8,521,460 (48.5%) (National Statistical Of-

fice, 2019). The population is largely rural based with only 16.0 percent residing in the

urban areas.
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Figure 1: Geographical position of Malawi

3.3 Data sources

The study used 2015-2016 Malawi Demographic Health Survey (MDHS) data whose

survey took place between October 2015 and February 2016 (National Statistical Office,

2015). It captures information in such areas as nutrition of children, births from women

aged 15-49, women’s characteristics, children’s and household characteristics, among
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others. For the prediction and projecting of WHA Global Nutritional Targets, 2004

MDHS, 2010 MDHS and 2019-20 MICS data were also used. To obtain 2015-2016

MDHS data, a nationally representative sample of households was selected using two

staged sampling technique. First stage was to select 850 clusters (standard enumeration

areas, SEAs) from a master sampling frame constructed from the 2008 Malawi popula-

tion and housing census (MPHS). Clusters were selected from 173 urban and 677 rural

areas using a probability proportional to size selection. In the second stage, households

listed from the selected clusters were used as a sampling frame for selecting households

into the final sample. All women aged 15 to 49 and children aged 6-59 months were

eligible to participate in the survey and with the parent’s or guardian’s consent, children

aged 6-59 months were also tested for anaemia. The data on children were obtained

through face-to-face interviews with their mothers/caretakers. In total 5,245 children

under-five years were tested for anaemia from which 4,601 were included in the study.

A total representative sample of 27,516 households was selected, and 26,564 house-

holds were considered to be occupied in the 2015-16 MDHS. Data collection was

done through questionnaires. Total households that were successfully interviewed were

26,361, yielding a response rate of 99.2%. Out of 25,146 eligible women, 24,562 were

successfully interviewed, yielding a response rate of 97.7%. The data set used in the

analysis was child record data set, which was based on woman and household ques-

tionnaires. Data management in terms of extracting and generation of variables from

child record data set was done in STATA Version 14 (StataCorp, 2015) and in R (R Core

Team, 2021).
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3.4 Cluster locations

Figure 2 shows sampled cluster locations within the 28 districts of Malawi. Many

clusters were situated in the Southern part of Malawi followed by the Central region

(Table 1).

Table 1: Cluster allocation

Region Clusters No Individuals sampled

Northen 161 819

Central 284 1599

Southern 402 2183

Total 847 4601
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Figure 2: MDHS sampled cluster locations.

3.5 Statistical analysis

Bivariate analysis was employed to examine association between the response variable

(anemia status) and the explanatory variables. Statistical significance was dependent on

the p-values and was set at p = 0.05 representing 5% level of significance. Stepwise

regression model selection using GLM was used to identify the covariates; identified

covariates were carried forward to fit geostatistics binomial logistic regression models

and spatial predictions using Monte Carlo Maximum Likelihood (MCML) approach in

order to predict anaemia outcomes. The results in GLM logistic regressions were used

to examine the relationship between anaemia status and the determinant variables.
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3.5.1 Measure of variables

Response variable

In the study, the binary response variable, anaemia status, was determined by haemoglobin

level. Children whose haemoglobin values were less than 11.0 g/dl were anaemic and

were coded as 1. Children with values of haemoglobin values of 11.0 g/dl or higher

were categorised as not anaemic and were coded as 0.

Let Yi be anaemia status of children aged 6–59 month. Then;

yi j =


1: Hb < 11.0 g/dL anaemic

0: Hb ≥ 11.0 g/dL not anaemic

Explanatory variables

In the analysis, covariates from the community, household, child levels and environ-

mental factors were included. Community level variables included residence and re-

gion. Household level factors included maternal education, age of household head, sex

of household head, number of children under-five years, wealth index, water source and

birth order. Individual level variables included were child related variables. Child spe-

cific variables include child age, child fever, child birth weight, child diarrhoea, child

cough, child stunting, child sex and haemoglobin level. Environmental factors included,

population count in 2015, rainfall amount in 2015, land surface temperature, altitude,

mean temperature in 2015, proximity to water, annual precipitation 2015, built popu-

lation in 2014, day land surface temperature in 2015, diurnal temperature range 2015,

enhanced vegetation index 2015, insecticide treated bed-net use coverage in 2015, land

surface temperature 2015, malaria incidence and prevalence in 2015 and nightlights
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(composite). The covariates are presented in a summarised form in Table 2.

Table 2: Covariates used

Individual Household Community Environment

child age in months wealth index region Elevation

child fever no of u5 children residence rainfall

child stunt maternal education GPS locations malaria incidence

child sex age of household head population count

child birth weight sex of household head land surface temperature

child diarrhoea water source mean temperature

child cough birth order proximity to water

child wasting toilet share annual precipitation

child overweight toilet type day land surface temp

haemoglobin level diurnal temperature range

enhanced vegetation index

itn coverage

malaria prevalence

nightlights

Two GLM models (Model 1, Model 2) were fitted: Model 1 had the following covari-

ates: child age, elevation, wealth index, number of under five children, child stunting,

child fever and age of the household head.

Model 2 had the following covariates: child age, elevation, wealth index, number of

under five children, child stunting and child fever. The BIC at 95% confidence interval
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was used to select the best model. The two models were fitted to find one model that

best fitted the model. The model with least value of BIC was regarded as the best model.

3.5.2 Geostatistical model for child anaemia

The formulation of the geostatistical model followed standard geostatistical model for

prevalence surveys we defined earlier in Equation (2.11). For the visited enumeration

areas at different villages xi, in the study region A ⊂ R2 and sample mi : i = 1, . . . ,n

individuals at risk in each community. yi designate the number of children who tested

anaemia positive out of mi children at location xi in the community A ⊂ R2, and a

vector of associated covariates d(xi) ∈ Rp. The standard geostatistical model for Yi ∼

Bin(mi, p(x)) where p(xi) measures the child anaemia prevalence at location xi. Adopt-

ing the logistic link function, the model assumes that:

log
{

p(x)
1− p(x)

}
= α +d(x)′β +S(x) (3.1)

where;

• α is the intercept parameter

• S(x) is an unobserved random effect which is Gaussian process with zero mean

and a constant variance σ2

• d(·) is a vector of observed spatial explanatory variables associated with the re-

sponse Y

• β is a vector of spatial regression coefficients for the covariates.

The empirical logit transform is defined as follows:

Y ∗
i j = log

{
(Yi j +0.5)

mi j −Yi j +0.5

}
(3.2)
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The underlining assumption is that:

Y ∗
i j = α +d(xi j)

′
β +S(xi)+Zi (3.3)

where;

• Zi are mutually independent zero-mean Gaussian random variables with variance

τ2

• Index i represents the household and the index j represents an individual within

the household.

All the anaemia severity levels; namely mildly anaemic (10–10.9 g/dL), moderately

anaemic (7–9.9 g/dL), and severely anaemic (<7 g/dL) fell under status “anaemia pres-

ence” coded as 1 and 0 otherwise. The covariate vector d(xi)
′ represents DHS covariates

in the model.

Spatial model was fitted. The Matérn shape parameter κ and relative variance param-

eters τ2 were fixed at 1.5 and 0, respectively. We fix the shape parameter because it is

generally very difficult to estimate it from data. It was assumed that the true surface was

a realisation of a stationary Gaussian process. The resulting estimated model parame-

ters in the model were used to make spatial predictions over a fine grid of 5 × 5 km.

Anaemia prevalence in children under-five years for all the unsampled locations was

mapped. All the analysis and mapping were carried out using the R statistical software

environment version 3.6.0 (R Core Team, 2021).
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3.6 Ethical considerations

To ensure research ethics were not compromised, the survey protocol was reviewed and

approved by the National Health Sciences Research Committee in Malawi and the ICF

Institutional Review Board National Statistical Office (2015). Data collectors were also

trained on how to conduct themselves during the data collection in order to respect the

rights of individuals participating in the study. Participants were informed of their right

to determine whether they wanted to participate in the study or not. Blood specimens for

anaemia testing were collected from women age 15-49 who voluntarily consented to be

tested and from all children age 6-59 months for whom consent was obtained from their

parents or the adult responsible for the children. They were also informed of their right

to abstain or withdraw at any time without reprisal. The risks and benefits of the study

were adequately explained to study participants. Parents of children with a haemoglobin

level below 7 g/dl were instructed to take the child to a health facility for follow-up care

National Statistical Office (2015). Suitably trained investigators conducted the study,

using an approved protocol. Written informed consent was obtained from participants

before the survey. For children aged 6-59 months, consent was obtained from their

parents or the adults responsible for the children. In this study, DHS Program, USA,

granted permission to use the data after application was made to seek for the permission.

No further ethical clearance was therefore sought.

Data collected was protected and was strictly used by NSO for analytical purposes for

three years from the time of data collection. De-identified was available to the public

after release of the 2015- 16 MDHS (National Statistical Office, 2015).
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3.7 Conclusion

The study used 2015/16 MDHS data. Sampled clusters were within the 28 districts. In

total, 4, 601 individuals were used in the analysis. Anaemia status of children aged 6-59

months was dependent on haemoglobin level (Hb), Hb < 11.0 g/dL being anaemic and

Hb > 11.0 g/dL not anaemic. In the bivariate analysis, association between the anemia

status and other explanatory variables was sought. Stepwise regression model selection

using GLM was used to identify variables to best fit GLGM model.
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CHAPTER 4

RESULTS

4.1 Introduction

The first part of this Chapter 4 presents results based on exploratory data analysis from

the bivariate analysis and results of non-spatial binary logistic regression(GLM model).

The remainder of the Chapter presents result from geostatistics binomial logistic regres-

sion models and spatial predictions.

4.2 Characteristics of study population

A total of 4,601 children aged 6–59 months (3,370 males and 1,231 females) were in-

cluded in the study. Out of these children; 2,877 were anaemic representing 62.5%

anaemia prevalence national-wide. Table 8 in appendix 1 summarises the propor-

tions of children with anaemia. Children from Southern part of Malawi had higher

anaemia prevalence at 63.5% followed by Central region and Northern region with

anaemia prevalence of 62.4% and 60.2% respectively. Children from the rural areas

were more vulnerable to anaemia. Out of 3,865 cases examined, 2,460 were anaemic

representing 63.6% prevalence compared to 56.7% of children from the urban resi-
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dence. Anaemia prevalence was high in children from households whose water sources

were unimproved, at 63% against 61.3%. Children from households which had unim-

proved toilet facilities were at high risk of child anaemia, they had anaemia prevalence

of 68.1% compared to 62.0% prevalence of anaemia from households with improved

toilet. Children from male headed households had slightly less proportion of anaemia,

at 62.2% as compared to female headed households, 63.4%.

Children from households with shared toilets recorded high anaemia prevalence, 64.5%

than children from households which unshared toilets, 61.4%. Highest anaemia preva-

lence was registered in children from poorest households, 69.3% than in children from

the richest households, 56%. The trend entails that child anaemia was less likely in well-

to-do households. Children who were breastfed during the first 6 months of birth had

62.5% proportion of child anaemia compared to their counterpart, at 63.6%. Anaemia

prevalence was high in children who were stunted at 66.4% than in children who were

not stunted 60.3%. Child anaemia was higher in children who were wasting, at 64.8%

compared to students who were not wasting, 62.5%. Prevalence was shown to be higher

in children under weight at 64.8% compared to children not under weight, 62.5%. Male

children anaemia prevalence was slightly higher at 63.5% than their female counter

part, 61.6%.

Children of mothers with no education were shown to have the highest anaemia preva-

lence at 69.4% compared to children of mothers with higher education level (45.5%).

Increasing levels of education were associated with decrease of anaemia prevalence in

children. Children who had fever during the survey had higher prevalence at 67.6%

compared to children who had no fever. Anaemia prevalence in children who had diar-
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rhoea was high at 68.1% than children who had no diarrhoea, 61.4%. Prevalence was

shown to be the same in children who had cough (62.4%) and children without cough

(62.6%).

The average number of household members for the households which had anaemic

children was 5.54±2.06. Average age of the household head for anaemic households

was 35.85± 12.11 years. The average number of anaemic children in a household was

1.67 ± 0.72. The average age for anaemic child was 35.05±15.61 months. The average

birth weight for the anaemic children were 3947.98 ± 2101.28 grams

4.3 Bivariate test of individual covariates

The bivariate analysis was used to identify variables which were associated with anaemia

in children under five See Table 8 in appendix 1. All covariates with p-value less than

0.05 were significantly associated with child anaemia. Table 3 is a summary of co-

variates significantly associated with anaemia and were retained to be part of the GLM

model.
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Table 3: Statistically significant covariates in bivariate test

Covariate p-value

residence <0.001

wealth index <0.001

maternal education <0.001

number of children under five <0.001

child age in months <0.001

child fever <0.001

child stunting <0.001

child diarrhea <0.001

4.4 Generalized linear model

The stepwise regression method using glm function was used to select explanatory vari-

ables. Two GLM models were fitted, as presented in Table 4; Model 1 had a BIC of

5,916, and Model 2 had a BIC of 5,911. Model 2 was selected for having least BIC.

In the model selection process, non-significant covariates (i.e., those with p-value >

0.05) in Model 1 were dropped to yield Model 2. All the covariates in Model 2 were

statistically significant.

47



Table 4: Fitted GLM models

Model 1 Model 2

Covariates Estimate p-value Estimate p-value

(Intercept) 1.882 0.000 1.722 < 0.001

Child age (mth) -0.023 0.000 -0.023 < 0.001

Elevation -0.001 0.000 -0.001 < 0.001

Wealth-poor -0.158 0.102 -0.162 0.094

Wealth-middle -0.449 0.000 -0.466 < 0.001

Wealth-richer -0.304 0.003 -0.330 0.001

Wealth-richest -0.489 0.000 -0.516 < 0.001

No children u5 0.240 0.000 0.232 < 0.001

Child stunted 0.243 0.000 0.239 < 0.001

Child fever 0.214 0.003 0.209 0.004

HH age -0.005 0.060 - -

BIC 5916 5911

4.4.1 Correlation matrix and variance inflation factor

The likelihood ratio test (BIC values of 5911) suggests that model 2 in Table 4 provides

an excellent fit to the data. For the multicollinearity, the VIF was employed to check

for multicollinearity among the selected covariates, none of the VIF values was up to

5. This implies that there was no collinearity in the model. Correlation matrix for all

variables have Pearson correlation coefficient of less than |0.75| and it was assumed that

multicollinearity was not present (Table 5).
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Table 5: Correlation matrix and variation inflation factor

Covariate Child

age

Child

fever

Child

stunted

Children

u5

Wealth

index

Elevation

Child age (mth) 1.000

Child fever -0.137 1.000

Child stunted 0.023 0.015 1.000

No children u5 0.192 -0.068 0.066 1.000

Wealth index -0.046 -0.045 -0.130 -0.080 1.000

Elevation -0.008 -0.023 0.039 -0.036 0.026 1.000

VIF 1.074 1.025 1.020 1.071 1.032 1.006

Table 4 is a GLM model (Model 2) which best fitted the 2015-2016 MDHS under five

anaemia prevalence data.

Child age was found to inversely associate with anaemia in children under-five years,

-0.023 (p; < 0.001). An increase in age is associated with a reduction in anaemia

outcomes. Child stunting was found to directly associate with childhood anaemia, 0.239

(p; < 0.001). Stunting children were more vulnerable to anaemia than non stunting

children. Child fever was shown to be directly associated with anaemia in children

under-five years, 0.209 (p; = 0.004). More children 881 (67.6%) who suffered from

fever had anaemia. Number of children under-five years in a household was found to be

positively associated with anaemia, 0.232 (p; < 0.001). Children from households with

more children under-five years were at higher risk of having anaemia. Child anaemia

was found to inversely associate with the wealth index of the household, (poor, middle,

richer and richest, with -0.162 (p; = 0.094), -0.466 (p-value < 0.001), -0.330 (p; =
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0.001) and -0.516 (p; < 0.001) respectively. The trend entails that children from well-

to-do households were at less risk of having anaemia. Land elevation was found to

be inversely associated with child anaemia, -0.001(p; < 0.001). Children living in

highlands had less anaemia prevalence.

4.5 Spatial modelling of anaemia using GLGM model

Table 6: Monte Carlo maximum likelihood estimates and 95% confidence intervals for

the binomial logistic model fitted to 2015-16 MDHS under five years anaemia preva-

lence data.

Covariate Odds ratio Lower Bound Upper Bound

Intercept 5.842 4.063 8.398

Child‘s age 0.976 0.972 0.981

Child stunted 1.285 1.124 1.470

Fever 1.223 1.055 1.416

U5 children 1.250 1.138 1.374

Wealth - Middle 0.692 0.582 0.823

Wealth - richer 0.800 0.670 0.957

Wealth - Richest 0.655 0.541 0.793

Elevation 0.999 0.999 1.000

σ2 1.184 0.303 4.618

φ 1.124 0.065 19.356
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A unit increase in child age reduced anaemia in children under-five years by 2.4%,

i.e., an estimate of 0.976 with (95% CI[0.972, 0.981]). Children who were stunting

had 29% risk of being anaemic than non stunting children, i.e. adjusted odds ratio

(aOR) 1.285 (95% CI[1.124, 1.470]). The study found that children with fever were at

high risk by 22% compared to children who had no fever, aOR 1.223 (95% CI[1.055,

1.416]). A unit increase in number of children under-five years in the household in-

creased anaemia risk by 25%, aOR 1.250 (95% CI [1.138, 1.374]). Children from

middle, richer and richest households had reduction in risk of anaemic by 30.8%, aOR

0.692 (95% CI [0.582, 0.823]), 20%, aOR 0.800 (95% CI [0.670, 0.957]) and 34.5%,

aOR 0.655 (95% CI [0.541, 0.793]), respectively, as compared to the children from the

poor households. Children from households at upper altitudes were less likely to have

anaemia than children from households at lower altitudes. Elevation was, however, not

statistically significant in explaining child anaemia (Table 6).

4.6 Diagnostic test for spatial modeling

To test for the validity of independence assumption of the spatial process, empirical

variogram was used.
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Figure 3: Empirical variogram for the residuals

The solid line is the empirical variogram of the residuals from a standard linear re-

gression model. The shaded area is a 95% pointwise tolerance band generated under

the fitted geostatistical model. Empirical variogram in Figure 3 entails compatibility

of the adopted spatial correlation function for the child anaemia data. The empirical

variogram is falling within the shaded area.

4.7 Anaemia prevalence in children

Model-based geostatistical methods allowed the mapping of prevalence at a fine-scale

resolution of 5 × 5 km. Based on Figure 4, anaemia prevalence in children under 5 years
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was generally high in Malawi at 62.5% as of 2016, characterised by several hotspots.

Figure 4: Anaemia prevalence among children aged under 5 years in Malawi

Anaemia prevalence at district level showed that anaemia prevalence was very high

in Nsanje, Chikwawa and Salima districts, prevalence of greater than 75%. Man-

gochi, Balaka, Mwanza, Nkhotakota, Neno, Machinga, Likoma, Blantyre and Salima

had anaemia prevalence between 70% to 75%. Chiradzulu, Rumphi and Chitipa had

anaemia prevalence of less than 60% (see Table 9 in appendix 2 and Figure 9 in ap-

pendix 3).
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Most districts in Malawi had anaemia prevalence of greater than 62.5%. This showed

that Malawi remains a high anaemia prevalence country for child anaemia (Figure 4 and

Figure 5).

Figure 5: Emprical prevalence of child anaemia in sampled locations

Prevalence quantiles indicate that, at lower quantile (0.25), almost half of the clusters

were affected by anaemia. At a 0.75 quantile almost entire country had high anaemia

prevelance (Figure 6 ).
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Figure 6: prevalence quantiles of child anaemia

In Figure 7, where standard errors for child anaemia prevalence are presented, the result

showed relatively smaller values in areas closest to the sampled locations as presented

in Figure 2. The small margin of standard error indicates that data was adequately

observed, owing to the relatively large number of data points available for model esti-

mation.
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Figure 7: Standard errors for child anaemia prevalence

4.8 Exceedance probability maps

Model-based geostatistical methods allowed the mapping of prevalence at a fine-scale

resolution of 5 × 5 km. Based on Figure 4, anaemia prevalence in children under 5 years

was generally high in Malawi at 62.5% as of 2016, characterised by several hotspots.

Nsanje, Chikwawa, Salima, Blantyre, Likoma, Machinga, Neno, Nkhotakota, Mwanza,

Balaka and Mangochi were districts with high anaemia prevalence of ≥ 70%.
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Figure 8 is a map for the anaemia exceedance probabilities showing areas where p(x)≥

0.625 | data with 95% certainty in both cases. The predictive maps for anaemia preva-

lence at threshold of 0.625 was selected since the child anaemia prevalence in Malawi

was at 62.5%. Several areas in Malawi including Nsanje, Chikwawa, Zomba, Man-

gochi, Nkhota Kota and Karonga districts have locations with predicted prevalence

above 0.625 see Figure 4. The yellow areas show locations where prevalence is above

65%, and 75% (Figure 8). The identified areas, marked in yellow, are potential areas

the policymakers need to focus on when formulating programmes and interventions to

control anaemia in children under five.

(a) 65% EP (b) 75% EP

Figure 8: Exceedance probabilities at 65% and 75%

Higher anaemia prevalence was registered in Southern part of Malawi. Eight districts

namely, Nsanje, Chikwawa, Blanyre, Machinga, Neno, Mwanza, Balaka and Mangochi
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had prevalence ≥70%. In the central region, Salima and Nkhotakota districts had a

prevalence of ≥70%. Only Likoma district in the Northern region had prevalence of

≥70%. See Table 7.

Table 7: Child anaemia prevalence ≥ 62.5% and above

Northern Prevalence Central Prevalence Southern Prevalence

Likoma 73.5 Salima 74.9 Nsanje 78.5
Nkhatabay 68.8 Nkhotakota 71.3 Chikwawa 77.6
Karonga 67.8 Ntcheu 66.6 Blantyre 74.9
Mzuzu city 63.4 Dowa 66.1 Machinga 73.1

Ntchisi 65.8 Neno 72.4
Lilongwe city 65 Mwanza 71.3
Lilongwe 64.1 Balaka 70.7
Kasungu 64.0 Mangochi 70.0
Mchinji 62.7 Zomba 68.4

Zomba city 65.4
Phalombe 64.6
Blantyre city 64.2

4.9 Conclusion

Majority of children under-five years old in Malawi were anaemic, a prevalence of

62.5%. Stepwise model selection using GLM found the following explanatory vari-

ables; child age, elevation, wealth index, number of children under-five years, child

stunting and child fever to be statistically significant in explaining child anaemia. There

was no element of multicollinearity among the selected covariates. None of the VIF val-

ues exceeded 5. Child anaemia data for the selected variables was compatible with the

GLGM model since the empirical variogram fell within the 95% tolerant band.
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CHAPTER 5

DISCUSSION

5.1 Introduction

The study aimed to asses factors of anaemia in children under-five years old as well

as identifying hotspot areas for child anaemia. The factors and hotspot areas for child

anaemia were assessed and identified respectively using the GLGM model. The chapter

represents study findings on child anaemia determinants and anaemia hotspot areas.

5.2 Factors associated with anaemia in children under-

five years

The study established child age, child stunting, child fever, number of children-under

five years and household wealth index as significant determinants of child anaemia.

Child age was found to inversely associate with anaemia in children under-five years.

This could be because iron demand by younger children to facilitate physical growth

during the first year of life is high. Children who are getting older are able to sup-

plement diet richer in iron. In a similar study, Gayawan, Arogundade, and Adebayo
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(2014) reported that from a higher likelihood of being anaemic around the age of 6

months, the likelihood reduces as the child advances in age. The findings reveal that,

younger children were observed to be at higher risk of childhood anaemia compared to

older children. Similar outcomes have been observed in studies conducted and reported

in Malawi and Togo by Roberts and Zewotir (2020) and Nambiema, Robert, and Yaya

(2019), in which older children were negatively associated with childhood anaemia .

Sufficient intake of iron prevents the occurrence of anaemia in older children. Ac-

cording to World Health Organization (2017) report, infants and toddlers from 1 to 3

years are encouraged to take foods rich in iron namely, cereal, red meats and vegetables

This is to ensure the body has enough hemoglobin levels for physical and psychomo-

tor functioning. In summary, cognitive development in children during early years of

life depends on child age. This could be a reason enough why child age is negatively

associated with child anaemia.

The relationship between number of children under-five years in the household and

anaemia in children is well established. The higher the number of children under-five

years the more vulnerable they are to child anaemia. Due to increases in demand for the

amount of household resources available per child, household feeding patterns are likely

affected. In so doing, foods consumed end up not being sufficient to supply the required

nutrients such as Iron to the body for each under five child. Elmardi et al. (2020) in a

similar findings argued that a family with a large number of household members could

compete in available resources including foodstuff. This renders children in such house-

holds to have less haemoglobin levels the body requires for growth and development.

In such setting under five children are more likely to have child anaemia.
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Child fever was found to be positively associated with anaemia which also agrees with

the study by Ngwira and Kazembe (2016), where fever had a positive effect. According

to Ngwira and Kazembe (2016), fever is a common symptom of acute and chronic

inflammatory diseases, mostly infections, which have been associated with lower Hb

levels. This is probably due to the fact that inflammatory diseases are a source of low

production of iron and is a cause of distortion of blood cells. Additionally, fever is

an agent of loss of food appetite, in the process, it hinders children from consuming

foodstuff which could be source of iron and other nutritious food which are supplements

to the production of heamoglobin like folate, vitamins B12, A and C as is also discussed

in the literature (section 1.1.2) . Such children are, therefore, at high risk to anaemia.

Child anaemia was found to inversely associate with the wealth index of the household.

A possible explanation for the high prevalence of anaemia in children from the poor

households could be that such families have low income and are less likely to purchase

nutrient-rich foods (like iron, vitamins, etc). They are even food insecure and they

cannot afford better health service during illness for their children. Amugsi (2020) in

his study also reported that children from well-to-do households, the middle and richest

households had a normal Hb concentration in relation to children from poor households.

In this view, children from well-to-do households have easy access to nutritious food

and better caring practices essential for optimal child health. The higher prevalence of

anaemia among children in low-income families is, therefore, inevitable (Gebreweld et

al., 2019).

Land elevation was found to be inversely associated with child anaemia. A possible ex-

planation is that, hemoglobin increases as altitude of residence increases. In one study
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by Alfonso and Leon-abarca (2020), it was revealed that children from low altitudes

had higher aneamia prevalence (8.5%) than those from high altitudes (1.2%, p<0.001).

Elevation has therefore possible negative influence on anaemia. Children from house-

holds at higher altitudes are associated with less anaemia prevalence than children from

households at lower altitudes. In a similar study, Ngwira and Kazembe (2016), high-

lighted that highland areas are associated with lower temperatures and hence less risk to

malaria which is also a cause of anaemia. According to Nambiema et al. report, children

with malaria were at high risk of anaemia. Increased hemolysis or decreased red blood

cell production rates, could explain the higher risk of anemia among malaria patients

compared to non-malaria patients (Nambiema et al., 2019). Thus this study findings

agrees with literature of inverse association between land elevation and child anaemia.

5.3 Child Anaemia Hotspot Areas

Exceedance probability (EP) maps were used to identify anaemia hotspot areas for accu-

rate and timely interventions and effectiveness in monitoring and evaluation of anaemia

control programmes.

Malawi anaemia prevalence was at 62.5%. Thus exceedance probabilities showed areas

such that

p(x) = 0.625 | data with 95% certainty

At 65% EP, most districts in Malawi had child anaemia prevalence. These include

Nsanje, Chikwawa, Salima, Blantyre, Likoma, Machinga, Neno, Nkhotakota, etc . See

(Table 7 and Figure 8a). At 75% EP, districts like Nsanje, Chikwawa and Salima had

high prevalence of anaemia See (Table 7 and Figure 8b). Several factors lead to high
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child anaemia prevalence in these districts. The observed spatial heterogeneity were

due to unobserved factors not captured by the covariates in the GLGM model. The

geographical variation in anaemia-causing infections, such as malaria, hookworms, and

helminths, could be among influences of such spatial variations. All anaemia hotspot

districts namely, Nsanje, Chikwawa and Salima are at lower attitudes and are associated

with low Hb levels, high temperatures and are near water bodies. According to the study

findings (Table 6) and the literature(Khulu, 2019; Ocas-co, Tapia, & Gonzales, 2018),

altitude is inversely associated with anaemia; it increases with decrease in altitude. In

addition water bodies and high temperatures (>21◦C) are favourable conditions for

mosquitoes to breed, resulting in increased malarial transmission and let alone malaria

anaemia which is a cause of anaemia.

On the contrary, areas at higher altitudes are associated with higher Hb levels, low

temperatures, and are at highlands (Ocas-co et al., 2018). No wonder districts like Chi-

tipa, Rumphi, Chiradzulu, Mulanje, Mzimba, Thyolo, Dedza and Mchinji had anaemia

prevalence of ≤ 63%. See Table 9. This difference is due to the lower oxygen con-

centration at higher altitude than at lower altitude so that an individual at high altitude

requires relatively a large number of Hb cells to carry enough oxygen needed by the

body.

Geographical nutritional variation also explains the spatial heterogeneity of childhood

anaemia in Malawi (Ngwira & Kazembe, 2016). According to Ngwira and Kazembe,

the cause of regional nutritional differences can be natural disasters such as floods and

difference in climatic conditions. Flooding of shire river which annually destroys crops

in Nsanje and Chikwawa affects nutrition of these areas. Even population densities
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in these areas are This explains why Nsanje and Chikwawa are the most top hotspot

districts for child anaemia in Malawi.

Additionally, anaemia hospot districts are reported to have high population densities

(National Statistical Office, 2019). This entails high households size and inadequate

social services to support the rapid growing populations. Henceforth, there is high

likelihood of low levels of education which renders most homes to be in the lower

wealth index category. This even make it hard for parents and guardians to give the

desired health care support like provision of nutritious food, balanced diet foods and

even in a time of need.

Accelerating progress in anaemia reduction for children under-five years in Malawi is

possible. In situations, where resources are not enough, the policy direction is to target

interventions and control programmes in anaemia highly affected areas like Nsanje,

Chikwawa and Salima. See Table 7.

5.4 Conclusion

Child age, child stunting, child fever, number of children-under years and household

wealth index were revealed to be significant determinants of child anaemia. At 75% EP,

Nsanje, Chikwawa and Salima were reported to have high child anaemia prevalence.

A range of factors attributed to high anaemia prevalence in these areas such as being

along water bodies and high temperatures, lower altitudes and adverse climate change

variations. To optimise utilisation of resources in anaemia reduction, prevalence maps

are crucial to prioritise hotspot areas (Nsanje, Chikwawa and Salima districts).
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CHAPTER 6

CONCLUSION

6.1 Introduction

This chapter represents the study overview, in terms of research topic, research problem,

research objectives as well as theoretical framework underlying Geostatistics models

and analysis. It also represents conclusions, recommendations and limitations of the

study.

6.2 Conclusions

The study was set to map anaemia prevalence in children under-five years old in Malawi

using the GLGM model. Ending child anaemia entails achieving SDG 3.1 and SDG 3.2

which strives at ending all forms of malnutrition and preventable deaths of children

under-five years by 2030 and reducing under-five mortality to as low as 2.5%. Malawi

as a low-resourced, identification of hotspot areas is critical to optimise utilization of

available resources to fight child anaemia. Existing studies on child anaemia did not

consider prevalence spatial effects which are fundamental key in identifying areas with

above average anaemia prevalence. GLGM model was therefore a best fit in such a
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low-resource settings where comprehensive disease registries do not exist. It has the

ability to estimate and predict prevalence both at observed and unsampled locations.

In 2016, MDHS survey indicated child anaemia prevalence of 63% which was high

and a severe public health problem according to WHO. High prevalence of anaemia

and its consequences is so challenging to children’s health, growth and development.

This study aimed at assessing factors of child anaemia and identifying areas that need

targeted interventions in order to control anaemia in children under-five years old.

Geostatistical model formulation considered visited communities at sampled EAs xi :

i = 1, . . . ,n distributed over the boundary of Malawi, in each community, sampling mi

individuals and recording whether each tests positive or negative for the anaemia. If

p(x) denotes prevalence at location x, the standard sampling model for the resulting

data was a binomial

Yi ∼ Bin(mi, pi) (6.1)

Linkage of the p(xi) at different locations is usually desirable, and is essential when

making inferences about p(x) at unsampled locations x. Adopting the logistic link

function, the model assumed that:

log
{

p(x)
1− p(x)

}
= α +d(x)′β +S(x)

To identify hotspot areas, exceedance probabilities were used. Areas whose anaemia

prevalence was above a set threshold of 0.625, was considered to have high anaemia

prevalence. The simplest case of an exceedance probability is

EP = Pr(x > c) (6.2)

where Pr(x) is a probability which estimates how frequently the relative risk exceeds
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the null risk and can be regarded as an indicator of how unusual the risk is in that area.

c is the set threshold and was at 0.625 since the child anaemia prevalence was at 62.5%.

Bivariate analysis was employed to examine association between child anemia status

and other explanatory variables. Statistical significance level of 5% was assumed.

Stepwise regression model selection using GLM was used to identify covariates to fit

GLGM. MCML spatial approach was used to predict anaemia outcomes.

The study revealed anaemia prevalence of 62.5% in children under-five years. Thus

a severe public health problem based on WHO criteria. Child age, child fever, child

stunting, number of children under-five years in a household and household wealth

index were strongly associated with child anaemia. Elevation was found to be inversely

associated with child anaemia.

Spatial variations were marked and anaemia hotspot areas were identified. At 65% EP,

majority of districts in Malawi had anaemia prevalence of ≤65%. These included, Li-

longwe, Zomba, Ntchisi, Dowa, Ntcheu, Karonga etc, see Table 7. Thus, child anaemia

was severe in most parts of Malawi. At 75% EP, anaemia hotspot districts were identi-

fied to be Nsanje, Chikwawa and Salima.

6.3 Recommendations

In order to reduce the burden of anaemia in children under-five years in Malawi the

study recommends the following:

• Set nutritional targets at the country level, including the desired average annual re-

duction rate and country-level baselines
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• All established interventions should aim at maintaining sufficient iron levels among

children by having in place programmes like sanitation and hygiene, disease control,

and reproductive health to ensure effective, safe, and wide delivery to those at high

risk.

• Ensure development policies and programmes should include nutrition, by integrat-

ing nutrition outcomes across multiple sectors, such as health, food systems, water,

sanitation and hygiene, and delivery platforms for improved nutrition across the pop-

ulation.

• Timely identification of anaemia hotspot through mapping to optimise usage of re-

sources to fight against the condition.

6.4 Limitation of study

The following were the study’s limitations:

• No information on iron levels in the children was established. Iron deficiency plays

a major role in childhood anaemia.

• Heterogeneity of child anaemia is both in space and time. To include time com-

ponent, more data spanning several years was needed.The study did not therefore

consider time factor since only used one cross sectional data set for 2015/16 MDHS.

• The study did not model the maternal anaemia, which is usually the biggest predictor

of child anaemia. Maternal modelling was beyond the scope of current work but a

future work.
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APPENDIX

Appendix 1: Socio-demographic determinants of child

anaemia

Table 8: Socio-demographic determinants of child anaemia

Covariates Total No Yes P.Value
n = 4601 n = 1724 n = 2877

No of HH Members 0.595
5.55 (2.09) 5.58 (2.13) 5.54 (2.06)

Region 0.238
North 819 (100%) 326 (39.8%) 493 (60.2%)
Central 1599 (100%) 602 (37.6%) 997 (62.4%)
South 2183 (100%) 796 (36.5%) 1387 (63.5%)
Residence < .001
Urban 736 (100%) 319 (43.3%) 417 (56.7%)
Rural 3865 (100%) 1405 (36.4%) 2460 (63.6%)
Water source 0.299
Unimproved 3293 (100%) 1218 (37%) 2075 (63%)
Improved 1308 (100%) 506 (38.7%) 802 (61.3%)
Toilet 0.024
Unimproved 367 (100%) 117 (31.9%) 250 (68.1%)
Improved 4234 (100%) 1607 (38%) 2627 (62%)
HH sex 0.502
Male 3370 (100%) 1273 (37.8%) 2097 (62.2%)
Female 1231 (100%) 451 (36.6%) 780 (63.4%)
HH age 0.058

36.11 (11.99) 36.55 (11.78) 35.85 (12.11)
Toilet share 0.043
No 2956 (100%) 1140 (38.6%) 1816 (61.4%)
Yes 1645 (100%) 584 (35.5%) 1061 (64.5%)
Wealth index < .001
Poorest 994 (100%) 305 (30.7%) 689 (69.3%)
Poorer 1037 (100%) 358 (34.5%) 679 (65.5%)
Middle 900 (100%) 371 (41.2%) 529 (58.8%)
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Richer 851 (100%) 330 (38.8%) 521 (61.2%)
Richest 819 (100%) 360 (44%) 459 (56%)
U5 children < .001

1.64 (0.73) 1.59 (0.74) 1.67 (0.72)
breast feeding 0.933
No 77 (100%) 28 (36.4%) 49 (63.6%)
Yes 4524 (100%) 1696 (37.5%) 2828 (62.5%)
child stunt < .001
No 2917 (100%) 1158 (39.7%) 1759 (60.3%)
Yes 1684 (100%) 566 (33.6%) 1118 (66.4%)
child wasting 0.693
No 4463 (100%) 1675 (37.5%) 2788 (62.5%)
Yes 138 (100%) 49 (35.5%) 89 (64.5%)
child underweight 0.243
No 4024 (100%) 1521 (37.8%) 2503 (62.2%)
Yes 577 (100%) 203 (35.2%) 374 (64.8%)
Child sex 0.215
Male 2244 (100%) 820 (36.5%) 1424 (63.5%)
Female 2357 (100%) 904 (38.4%) 1453 (61.6%)
Child age (month) < .001

36.71 (15.04) 39.48 (13.60) 35.05 (15.61)
Maternal education < .001
None 532 (100%) 163 (30.6%) 369 (69.4%)
Primary 3041 (100%) 1123 (36.9%) 1918 (63.1%)
Secondary 984 (100%) 414 (42.1%) 570 (57.9%)
Higher 44 (100%) 24 (54.5%) 20 (45.5%)
Child fever < .001
No 3298 (100%) 1302 (39.5%) 1996 (60.5%)
Yes 1303 (100%) 422 (32.4%) 881 (67.6%)
Mother’s age < .001

28.06 (6.75) 28.59 (6.70) 27.74 (6.77)
Birth weight 0.048

3901.59 (2059.48) 3824.16 (1985.96) 3947.98 (2101.28)
Birth order 0.071

2.97 (2.04) 3.04 (2.06) 2.92 (2.03)
Child diarrhea < .001
No 3804 (100%) 1470 (38.6%) 2334 (61.4%)
Yes 797 (100%) 254 (31.9%) 543 (68.1%)
Child cough 0.931
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No 3522 (100%) 1318 (37.4%) 2204 (62.6%)
Yes 1079 (100%) 406 (37.6%) 673 (62.4%)

Appendix 2: Child anaemia prevalence across districts

Table 9: Child anaemia prevalence across districts

District Prevalence
Nsanje 78.5
Chikwawa 77.6
Salima 74.9
Blantyre 74.0
Likoma 73.5
Machinga 73.1
Neno 72.4
Nkhotakota 71.3
Mwanza 71.3
Balaka 70.7
Mangochi 70.0
Nkhatabay 68.8
Zomba 68.4
Karonga 67.8
Ntcheu 66.6
Dowa 66.1
Ntchisi 65.8
Zomba City 65.4
Lilongwe City 65.0
Phalombe 64.6
Blantyre City 64.2
Lilongwe 64.1
Kasungu 64.0
Mzuzu City 63.4
Mchinji 62.7
Dedza 62.4
Thyolo 62.2
Mzimba 62.1
Mulanje 60.7
Chiradzulu 58.2
Rumphi 56.3
Chitipa 54.3
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Appendix 3: Anaemia prevalence distribution by dis-

trict

Figure 9: Anaemia prevalence predictions among children aged under 5 years in Malawi
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